A Two-stage Artifitial Neural Network Model to Predict the Shrinkage of a Polystyrene Matrix Reinforced with Silica Sand and Cement
نویسنده
چکیده
Prediction of the shrinkage for the manufacturing purposes of composite materials is not an easy task. The use of existing mathematical and statistical tools may help in solving part of the problem.On the other hand, artificial network tools are of a great importance too. In this investigation, a two-stage Artifitial neural network was used to predict the amount of shrinkage. Using an experimentally measured values of the shrinkage under different material and processing parameters to judge about the relevance of the developed model, it was found that the two-stage Artifitial neural network approach is more capable of predicting the shrinkage than the analytical models because the latter lacks consideration of the materials and processing variables. © 2011 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved
منابع مشابه
EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS
In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملPREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS
Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...
متن کاملPREDICTION OF LOAD DEFLECTION BEHAVIOUR OF TWO WAY RC SLAB USING NEURAL NETWORK APPROACH
Reinforced concrete (RC) slabs exhibit complexities in their structural behavior under load due to the composite nature of the material and the multitude and variety of factors that affect such behavior. Current methods for determining the load-deflection behavior of reinforced concrete slabs are limited in scope and are mostly dependable on the results of experimental tests. In this study, an ...
متن کاملNUMERICAL TECHNIQUES FOR DIFFERENT THERMAL INSULATION MATERIALS
The objective of this work is to predict the temperature of the different types of walls which are Ferro cement wall, reinforced cement concrete (RCC) wall and two types of cavity walls (combined RCC with Ferrocement and combined two Ferro cement walls) with the help of mathematical modeling. The property of low thermal transmission of small air gap between the constituents of combine materials...
متن کامل